��ࡱ�>�� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ZO������\p Administrator B�a�=���=�P�l�28X@�"��1�����[SO1�����[SO1�����[SO1�����[SO1�����[SO1�����[SO1�����[SO1� ���[SO1�$���[SO1.���Times New Roman1�����[SO1���Arial1���I{�~1 h6��I{�~ Light1,6��I{�~16��I{�~1�6��I{�~1���I{�~1���I{�~1���I{�~1�4��I{�~1� ��I{�~1���I{�~1� ��I{�~1�4��I{�~1�<��I{�~1�?��I{�~1�>��I{�~1� ��I{�~"�"#,##0;"�"\-#,##0"�"#,##0;[Red]"�"\-#,##0"�"#,##0.00;"�"\-#,##0.00#"�"#,##0.00;[Red]"�"\-#,##0.007*2_ "�"* #,##0_ ;_ "�"* \-#,##0_ ;_ "�"* "-"_ ;_ @_ .))_ * #,##0_ ;_ * \-#,##0_ ;_ * "-"_ ;_ @_ ?,:_ "�"* #,##0.00_ ;_ "�"* \-#,##0.00_ ;_ "�"* "-"??_ ;_ @_ 6+1_ * #,##0.00_ ;_ * \-#,##0.00_ ;_ * "-"??_ ;_ @_ \$#,##0_);\(\$#,##0\)\$#,##0_);[Red]\(\$#,##0\) \$#,##0.00_);\(\$#,##0.00\)% \$#,##0.00_);[Red]\(\$#,##0.00\)�"Yes";"Yes";"No"�"True";"True";"False"�"On";"On";"Off"]�,[$� -2]\ #,##0.00_);[Red]\([$� -2]\ #,##0.00\)���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� � ���� ����� ����P� ����P� ���� �� ����� ����� ���� ����� ����� ����a>� �,���� �*���� ����� � � ����ff��� ����� ����� ����`� �+���� �)���� ����� ������� ����� � � � ���� ����� ����� ����� ����� ����� ����� ����  � � � � � �� � 8@ @ � � 8@ @ � � :<@ @ � � x@ @  � x@ @  � x@ @  � h@ @  � 8@ @ � ||L�n�1}A} 00_)ef[$� -}A} 00_)ef[$� -}A} 00_)ef[$� -}A} 00_)ef[$� -}A} 00_)ef[$� -}A} 00_)ef [$� -}A} 00_)�L[$� -}A} 00_)�L[$� -}A} 00_)�L[$� -}A} 00_)�L[$� -}A} 00_)�L[$� -}A} 00_)�L [$� -}A} 00_)23[$� -}A} 00_)23[$� -}A} 00_)23[$� -}A} 00_)23[$� -}A}  00_)23[$� -}A}! 00_)23 [$� -}-}# 00_)}A}$ 00_)[$� -}A}% 00_)�?[$� -}A}& 00_)23[$� -}-}' 00_)}A}( ��00_)����[$� -}A}+ a�00_)����[$� -}U}, 00_)[$� -##0.}�}/ �}�00_)����[$� -�##0.� � �}�}0 00_)����[$� -???�##0.???� ???� ???�}-}1 �00_)}-}2 ��00_)}A}3 �}�00_)���[$� -}A}6 �W�00_)���[$� -}�}7 ???�00_)����[$� -???�##0.???� ???� ???�}�}8 ??v�00_)�̙�[$� -�##0.� � �}A}: 00_)[$� -}A}; 00_)[$� -}A}< 00_)[$� -}A}= 00_)[$� -}A}> 00_)[$� -}A}? 00_) [$� -}x}@����00_)���� [$�����## ����� ������ 20% - @wr� 1�G�� 20% - @wr� 1 ef���� �%� 20% - @wr� 2�G�"� 20% - @wr� 2 ef���� �%� 20% - @wr� 3�G�&� 20% - @wr� 3 ef���� �%� 20% - @wr� 4�G�*� 20% - @wr� 4 ef���� �%� 20% - @wr� 5�G�.� 20% - @wr� 5 ef���� �%� 20% - @wr� 6�G�2� 20% - @wr� 6  ef���� �%� 40% - @wr� 1�G�� 40% - @wr� 1 �L���� �%� 40% - @wr� 2�G�#� 40% - @wr� 2 �L�˭� �%� 40% - @wr� 3�G�'� 40% - @wr� 3 �L���� �%� 40% - @wr� 4�G�+� 40% - @wr� 4 �L��� �%� 40% - @wr� 5�G�/� 40% - @wr� 5 �L���� �%� 40% - @wr� 6�G�3� 40% - @wr� 6  �L��� �%� 60% - @wr� 1�G� � 60% - @wr� 1 23���� �%� 60% - @wr� 2�G�$� 60% - @wr� 2 23���� �%� 60% - @wr� 3�G�(� 60% - @wr� 3 23���� �%� 60% - @wr� 4�G�,� 60% - @wr� 4 23��f� �%� 60% - @wr� 5�G�0� 60% - @wr� 5 23���� �%�! 60% - @wr� 6�G�4� 60% - @wr� 6  23�Ў� �%�"�����~vR�k� #h���+��h�� DTj�%� $h�� 1�=��h�� 1 DTj�%Dr��� %h�� 2�=��h�� 2 DTj�%�?����� &h�� 3�=��h�� 3 DTj�%23����� 'h�� 4�/��h�� 4 DTj�%�(�]�5���] ����� ���%������8^ĉ� )8^ĉ 2�*����������c�+}Y�5��}Y ����� �a�%� ,Gl;`�G��Gl;` �%Dr��Dr���-�����'�^�.��� ��'�^[0]� /���{�o�����{ ����� ��}�%������ ���0�h�gUSCQ@wr� 5�;�-�@wr� 5 [��� ����%� ?@wr� 6�;�1�@wr� 6  p�G� ����%� @�lʑ�^� ��lʑ �������������������� ������X��TableStyleMedium2PivotStyleLight16`�p 2013SCI���e�����VV�n* _20181130InCites_�lWS^�'Yf[2008_2018�e�z�US_5981�{=�"�"  ;���"�� ��g R�{�y 7Henan Univ Sci & Technol 7 Zhejiang Univ 7*APPLIED MATHEMATICS & INFORMATION SCIENCES 7Shandong Normal Univ 7,{N\O�USMO 7�^�S 7  7!Xu, Ruiwei; Xiong, Min; Sheng, LiXu, ShouFang; Ge, Li; Miao, YuXu, ShouFang; Li, Nan1Miao, Yu; Zhao, Fangfang; Wang, Ke; Chen, YanpingLiu, Baiyu; Ma, LiMa Li; Wang XiangYangMa, LiMa, Li; Cheng, LiangMa, Li; Wang, JingMa, Li; Wei, JunchengMa, Li; Zhu, AnqiangMiao, Yu; Xu, ShouFang)Guo, Song-Tao; Hua, Xiao-Hui; Li, Yan-Tao,Hua, Xiao-hui; Xu, Shang-jin; Deng, Yun-pingFeng, Baowei; Yang, Xin-guangCao, Linfen; Dai, ZhaohuiWOShQ�\O� 7Pingdingshan Univ 7Zhang, Haixia; Wang, FenghuiHenan Normal Univ 7 Xinxiang Univ 7WOS:000322481200001YAn Iterative Method with Norm Convergence for a Class of Generalized Equilibrium ProblemsWOS:000326556600003^Consistency for the LS estimator in the linear EV regression model with replicate observations451-458Wang, Yanling; Zhang, Yingshan5Weyl-type theorems and k-quasi-M-hyponormal operatorsWOS:000322037500017DSPECTRUM OF CLASS ABSOLUTE -*-k-PARANORMAL OPERATORS FOR 0 <= k <= 1Yang, Changsen; Shen, Junli671-678WOS:000328408200001Some Examples of Weak UninormsWu, Jiachao; Yuan, YayanWOS:000322038400004_Products of composition and n-th differentiation operators from alpha-Bloch space to Q(p) space3Li, Haiying; Wang, Cui; Xue, Tianyu; Zhang, Xiangbo761-766WOS:000321394400018EA Class of Quasitriangular Hopf Group Coalgebras and Drinfel'd Double.Dong, Lihong; Guo, Shuangjian; Wang, ShuanhongWOS:000319576700001YSome Operator Inequalities on Chaotic Order and Monotonicity of Related Operator FunctionYang, Changsen; Liu, YanminWOS:000319236300013KAsymptotic distribution of products of sums of independent random variables&Wang, Yanling; Yao, Suxia; Du, Hongxia283-292WOS:000329196000006NThe maximum likelihood estimations for a type of left ellipsoidal distributionWOS:000209490600001WOS:000209343200006BThe Cauchy problem for the generalized Degasperis-Procesi equation&Zuo, Fei; Tian, Changan; Wang, HongjunWOS:000324222500012xLarge-time behaviour for the compressible Navier-Stokes equations with a non-autonomous external force and a heat sourceWOS:000320021300002AThe Discounted Berry-Esseen Analogue for Autoregressive ProcessesMiao, Yu; Xue, Tianyu; Du, Tian 2684-2693LITHUANIAN MATHEMATICAL JOURNALWOS:000326271800001TThe controllability for the semi-discrete wave equation with a finite element methodZheng, Guojie; Yu, XinWOS:0003266712000018CONSTRUCTING NEW QUASITRIANGULAR TURAEV GROUP COALGEBRASDong, Lihong; Wang, Shuanhong 1217-1246WOS:0003173004000076Central limit theorems for moving average processes(*)Miao, Yu; Ge, Li; Xu, Shoufang80-90WOS:000328931300020IBOUNDS FOR THE WEIGHTED GINI MEAN DIFFERENCE OF AN EMPIRICAL DISTRIBUTIONMiao, Yu; Ge, Li; Peng, AngWOS:000327833600002.Some Limit Results for Pareto Random Variables#Miao, Yu; Wang, Yanling; Ma, Xinwen 4384-4391 SCIENCEASIAWOS:000324528200010HGlobal solutions to norm-preserving non-local flows of porous media type871-880WOS:000325967000019(GENERALIZATION ON KANTOROVICH INEQUALITY,Fujii, Masatoshi; Zuo, Hongliang; Cheng, Nan517-522WOS:000323314300011UInjectivity radius bound of Ricci flow with positive Ricci curvature and applicationsWOS:000321305900008uAn invariance principle for the law of the iterated logarithm for vector-valued additive functionals of Markov chains 1129-1137'Yang, Guangyu; Miao, Yu; Zhang, Xiaocai194-203WOS:000319329200001DThe contraction-proximal point algorithm with square-summable errorsTian, Changan; Wang, FenghuiWOS:000323664200002NNorm of an integral operator on some analytic function spaces on the unit diskLi, Hao; Li, SongxiaoWOS:000316983400009MAN INEQUALITY ON JORDAN-VON NEUMANN CONSTANT AND JAMES CONSTANT ON Zp,q SPACE97-102WOS:000317633700008,Study of Bayesian Network Structure Learning"Xiong, Wei; Cao, Yonghui; Liu, Hui49-54WOS:000317255800022kMultiple periodic solutions for asymptotically linear ordinary differential equations with double resonance'Li, Keqiang; Shan, Yuan; Chen, Yanchang234-243WOS:000325750500001cAveraging of the 3D non-autonomous Benjamin-Bona-Mahony equation with singularly oscillating forces-Zhao, Mingxia; Yang, Xinguang; Zhang, LingruiMATHEMATICAL COMMUNICATIONSWOS:000325886400001qUpper Semicontinuous Property of Uniform Attractors for the 2D Nonautonomous Navier-Stokes Equations with DampingYang, Xin-Guang; Li, Jun-TaoWOS:0003266714000045ON BRAIDED T-CATEGORIES OVER MULTIPLIER HOPF ALGEBRAS#Yang, Tao; Zhou, Xuan; Ma, Tianshui 2852-2868WOS:000326543000001\Bogdanov-Takens Bifurcation of a Delayed Ratio-Dependent Holling-Tanner Predator Prey System$Liu, Xia; Liu, Yanwei; Wang, JinlingWOS:000315425900008jMultiple solutions for asymptotically linear Duffing equations with Neumann boundary value conditions (II)$Li, Keqiang; Li, Juntao; Mao, Wentao548-553WOS:000316746800008AKato's inequality and Liouville theorems on locally finite graphsWOS:000328081500016(ALMOST SURE CONVERGENCE OF WEIGHTED SUMSMISKOLC MATHEMATICAL NOTES173-181Zhao, Wenzheng; Ma, Tianshui637-647Gao, Fugen; Li, XiaochunWOS:000320421600006-Convergence of Ricci flow on R-2 to the plane388-392WOS:000331707300005#Hexavalent (G, s)-transitive graphs!CZECHOSLOVAK MATHEMATICAL JOURNAL923-931WOS:000314768100003EBernstein theorems for complete alpha-relative extremal hypersurfaces143-152WOS:000323606400001On *-class A contractionsWOS:000322037500014Bicrossproduct RevisitedChen, Yanchang; Wang, Yanying777-787WOS:000326536900001dBogdanov-Takens and Triple Zero Bifurcations of a Delayed Modified Leslie-Gower Predator Prey SystemLiu, Xia; Wang, JinlingWOS:000316482600001[Bifurcations of a Ratio-Dependent Holling-Tanner System with Refuge and Constant HarvestingLiu, Xia; Xing, YepengWOS:000320725000010TLower bounds for the scalar curvature of noncompact gradient solitons of List's flowMa, Bingqing; Huang, Guangyue593-599WOS:000320661200009XOn the rigidity theorems for lagrangian translating solitons in pseudo-Euclidean space IXu, Rui Wei; Huang, Rong Li 1369-1380WOS:0003268469000166Tetravalent Edge-transitive Cayley Graphs of PGL (2,p)WOS:000322038400006(Small covers over a product of simplices773-783WOS:000320914700003ZGlobal optimization for generalized geometric programming problems with discrete variablesShen, Pei-Ping; Bai, Xiao-Di OPTIMIZATION895-917WOS:000323562200001FA Liouville-type theorem for an integral system on a half-space R-+(n)2ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES837-842WOS:000314739200001WOn the Bahadur representation of sample quantiles and order statistics for NA sequencesWOS:000311330600018KAn inequality between the James type constant and the modulus of smoothness622-629#FIXED POINT THEORY AND APPLICATIONSWOS:000328306500008=Remarks on compact shrinking Ricci solitons of dimension fourCPROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS/COMMUNICATIONS IN STATISTICS-THEORY AND METHODSWOS:000326523700001EA Global Optimization Algorithm for Generalized Quadratic ProgrammingJOURNAL OF APPLIED MATHEMATICSWOS:000318537600009ON CROSSED DOUBLE BIPRODUCT*Ma, Tianshui; Jiao, Zhengming; Song, Yanan'JOURNAL OF ALGEBRA AND ITS APPLICATIONSWOS:000310646500030IBLOW-UP FOR SEMILINEAR PARABOLIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT 1103-1110527-540WOS:000333661900003BHopf pi-Crossed Biproduct and Related Coquasitriangular StructuresMa, Tianshui; Song, Yanan>RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA127-145WOS:00031903<�3600017SSharp Threshold of the Gross-Pitaevskii Equation with Trapped Dipolar Quantum GasesACANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES378-387WOS:0003123440000086WEYL'S THEOREM FOR ALGEBRAICALLY QUASI-(*)-A OPERATORSZuo, Fei; Zuo, Hongliang107-115BOUNDARY VALUE PROBLEMS ADVANCES IN DIFFERENCE EQUATIONSSCIENCE CHINA-MATHEMATICS)JOURNAL OF THE KOREAN STATISTICAL SOCIETYWOS:000321239700008RGlobal existence and blow-up results for a classical semilinear parabolic equation&CHINESE ANNALS OF MATHEMATICS SERIES B587-592!FRONTIERS OF MATHEMATICS IN CHINAJiao, Hongwei; Chen, Yongqiang771-776Yang, Changsen79-86WOS:000313871000010fAsymptotic normality and strong consistency of LS estimators in the EV regression model with NA errorsSTATISTICAL PAPERS193-206'BANACH JOURNAL OF MATHEMATICAL ANALYSISCOMMUNICATIONS IN ALGEBRAALGEBRA COLLOQUIUMWOS:000309381100012[Multiple periodic solutions for asymptotically linear Duffing equations with resonance (II)+Li, Keqiang; Wang, Shangjiu; Zhao, Yonggang156-160WOS:000314739000026@Symmetry results for elliptic Schrodinger systems on half spaces259-268FILOMATWOS:000315656500055FKnowledge Entropy and Feature Selection in Incomplete Decision SystemsXu, Jiucheng; Sun, Lin*APPLIED MATHEMATICS & INFORMATION SCIENCES829-837WOS:000321663100001pA New Characterization of Generalized Weighted Composition Operators from the Bloch Space into the Zygmund SpaceLi, Hao; Fu, Xiaohong+JOURNAL OF FUNCTION SPACES AND APPLICATIONSWOS:000314326400004\Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds,JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES174-186WOS:000322424600004VSuper poly-harmonic property of solutions for Navier boundary problems on a half space*Chen, Wenxiong; Fang, Yanqin; Li, Congming 1522-1555*DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS817-823WOS:000315649800001sGradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds,Huang, Guangyue; Huang, Zhijie; Li, Haizhong209-232WOS:000324327800003/The classification of -quasi-Einstein manifoldsHuang, Guangyue; Wei, Yong&ANNALS OF GLOBAL ANALYSIS AND GEOMETRY269-282WOS:000320288900005UFINITE MORSE-INDEX SOLUTIONS AND ASYMPTOTICS OF WEIGHTED NONLINEAR ELLIPTIC EQUATIONS"ADVANCES IN DIFFERENTIAL EQUATIONS737-768ARCHIV DER MATHEMATIK(JOURNAL OF INEQUALITIES AND APPLICATIONS&ACTA MATHEMATICA SINICA-ENGLISH SERIESCPROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCESABSTRACT AND APPLIED ANALYSISYang, Changsen; Li, HaiyingWOS:000319703500008MSUPER POLYHARMONIC PROPERTY OF SOLUTIONS FOR PDE SYSTEMS AND ITS APPLICATIONS 2497-25141JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS+COMMUNICATIONS ON PURE AND APPLIED ANALYSISWOS:0003167254000069LIOUVILLE TYPE THEOREMS FOR POLY-HARMONIC NAVIER PROBLEMSCao, Linfen; Chen, Wenxiong 3937-3955WOS:000319478800034+The Cauchy problem for the Novikov equation7NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS 1157-1169WOS:000328902900007WSPECTRAL PROPERTIES OF POSITIVELY HOMOGENEOUS OPERATORS INDUCED BY HIGHER ORDER TENSORS0SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 1581-1595COMPTES RENDUS MATHEMATIQUE21-22Song, Yisheng; Qi, LiqunWOS:000323093000011LA diffusive logistic model with a free boundary in time-periodic environment$Du, Yihong; Guo, Zongming; Peng, RuiJOURNAL OF FUNCTIONAL ANALYSIS 2089-2142$JOURNAL OF MATHEMATICAL INEQUALITIESChen, Wenxiong; Li, Congming)DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS"}�S�S���eh��eg�nf[�y���WwSgu��QHrt^n/aDu, Yihong; Guo, Zongming%Yan, Wei; Li, Yongsheng; Zhang, Yimin Mathematics ACTA MATH SINBANACH J MATH ANALCOMMUN PUR APPL ANALFIXED POINT THEORY ACOMMUN ALGEBRADISCRETE CONT DYN-AJ INEQUAL APPLABSTR APPL ANALFRONT MATH CHINA J FUNCT ANALJ MATH ANAL APPLSCI CHINA MATH CZECH MATH J LITH MATH J ALGEBR COLLOQBOUND VALUE PROBL J APPL MATHP INDIAN AS-MATH SCIJ ALGEBRA APPLADV DIFFERENTIAL EQUACTA MATH APPL SIN-EJ MATH INEQUALP ROY SOC EDINB ANODEA-NONLINEAR DIFFANN GLOB ANAL GEOM ARCH MATHCR MATHJ FUNCT SPACE APPLADV DIFFER EQU-NYCHINESE ANN MATH BREND SEMIN MAT U PADDIFFER GEOM APPLCOMMUN STAT-THEOR M CAN MATH BULLJ MATH PURE APPLJ KOREAN STAT SOCMISKOLC MATH NOTESSTAT PAPAPPL MATH INFORM SCISIAM J MATRIX ANAL A MATH COMMUNHenan Normal Univ 7Henan Inst Sci & Technol 7Henan Normal Univ 7Henan Normal Univ 7Henan Normal Univ 7Henan Normal Univ 7Southeast Univ 7Osaka Kyoiku Univ 7 Donghua Univ 7Univ New England 7Henan Normal Univ 7Henan Normal Univ 7Zhengzhou Univ 7Henan Normal Univ 7Nanjing Agr Univ 7Univ Sci & Technol Beijing 7 Xinxiang Univ 7��!, U-@3.'/g0R�1��2�f4Q�5r 7 8 9 :� e;P�<��=�l?W�@��A��B��C��D�%F>G)*H�I��J� L SMvN=gO.�PJrQ9�R�T�XU kV2 �W� �X� �Y� �Z�([��[�l\3]��]Y3^�!_�X`cc�� � �PK!����[Content_Types].xml���N�0E�H���-J��@%�ǎǢ|�ș$�ز�U��L�TB� l,�3��;�r��Ø��J��B+$�G]��7O٭V���A��ػ��d�<�J-M{{�Ewk�"��t䎼y��q$�@L���|��rD�{F3�R��]L���,��_U������}�1��0�%�z��{8��I��dTj���(�!����X��z����@F8��'�u�H��A�,�0�� �� ��3# �|Q�qtzcZ�U*�r�H�{ �A����L���?�����������1�0Q"��R>V3`KPcg�U�kѧ�;C���t3v>�O��Q$$�����o�,��L��=���H�dr��촦�䋓|� �F7ׯT���ac���i�Na�)[g��2�J?:t��z����;��������v�Q�h�5(Ň;���� l���;�f�;��~ �(INwЕ�Q�oV�C�:��05k��ѐG��b��/�b���"IO��x���}D� '�YDxK�0ÕZeT����Oڣ�#CZ�&bgH��Ĕ����w@�o@^�x���w/����^>�:�[���Q�0�~�����ۧ����/��%�z/L�����?�I=��0ū�~���o^}���C{��>!1�=|�=d1,�����IL"D, �n�ꡌ,�5�.\�&|�!˸��WO,�㈯$q�|7�-�1c�Ǹ�w�\��'�dវ�L�C��\s�Qb9x�ZBz%.��[4P�H�� ��z�N1v��cB,��)g�ͥ�1�z�8M2!'V B�$��]�Ֆm�{=F]��3 �Q� ��o��D�K���4�����xͧ&n($xz�)�3,�K�>��N� ���c��m$��ԥ�1f"��x�ŽI���)�(�0�3{��g�J���1���ߞAr5)�ެ�×�1��w��s�]Y��c+�v9qFGo��B�c��� c�ч=��l^��AV9Į����XU� ��}�n�<"� �1^�=|��[�g���}���M���9S�}:=5��t�/N�����ZDȪ]�Y��u�-�]d���|bѸ��|iH��m3AԚ�� �ÕnA�r!��[9����-������$yk�����M���r��q+�R�%[�})�p��ه�lkh�<�PIvs�uWs�����];�|����8�{z��^&;Yy7�LѾ@g�N;�S}��=�J�rM�Ч>���F0����'Ώ�|Te&�p ���Ǚ���h�% U}�d!2� �-��#=�ԭ�t�Yz�Y��Sʹ� $��J���)�Lэfqz���l��uC@�^��1�M�� �� *#�3]0���^�;a�v�h)�W�j�W�+�_�;~��a��3����jg�KO�3��bo"��t[qݻ<��4�.�i��n6 m����gѩF/B㲾n.��)S�� � �֛X\�� ��hbf �x��Q!d�h���pb �%ĎPߺ]���T�t�_%�,��$���:�� &s������n���!�[� �wK� i��F�n;��x*M�#���#d�4W8�j񫃕$[������;�+�A��ͪ2���8��֜� �Y[�)K��U���t�e���b&��SyNG?�60��5�A �d��d� �iT���U#尷�]HY�H�Eʹ�����,fͰ)[��Z�7XmL 9ͬ�i��N��M����*��稺(�b2��b���U��F�ڱY�[�]�HY��Q�e��F8���+U~�ێZ�o�Jmi}sn�j��'�<�宨ڕpg�4Dcݓ�i��S�m ��8���T�nЯ��R�KA=��Za�^�a�: ��A�� ���j��ڏ� ����{=�soninLY\f�~������j�u?Q7�G �|Ҩ���v�Qj׻�R0�J�~�W4���h�[��3�;��[��a�Ԩ����QQ�[�R3�պA���gY+O�Gf 0��u�W��PK! ѐ��'theme/theme/_rels/themeManager.xml.rels��M �0���wooӺ�&݈Э���5 6?$Q�� �,.�a��i����c2�1h�:�q��m��@RN��;d�`��o7�g�K(M&$R(.1�r'J��ЊT���8��V�"��AȻ�H�u}��|�$�b{��P����8�g/]�QAsم(����#��L�[������PK-!����[Content_Types].xmlPK-!�֧��6 0_rels/.relsPK-!ky���theme/theme/themeManager.xmlPK-!����� �theme/theme/theme1.xmlPK-! ѐ��'� theme/theme/_rels/themeManager.xml.relsPK]� ���� ZO�� T�x������ļ��������������� � $�  d����MbP?_*+��%���@&C&"�_o�Ŗў,�R�|"&14�lWS^�'Yf[pef[ESIf[�y2013-2018���enUS��e��:S��20130101-20180930 � &C&11&P��&��j�Z��?'��j�Z��?(�����~�?)�\.����?M�Adobe PDF��S� � 4d��A4PRIVB ''''��0P4(�FF�����SMTJ�Adobe PDF ConverterResolution1200dpiPageSizeLetterPageRegionLeadingEdgeInputSlotOnlyOne0EBDAStandard�" d���? ��`�?�&��`U} C} �B} 3B} �B} �'B}  B} 3BB} �A} B} B} 3B} LC}  C�1 �QHrt^-N�yb�R:S�2018 �g Rq_�T�VP[  �                               � J� G?� GB� G@� G� G� GA� HF� GC� GD� GE� I~ K�?� D� DJ� D� D� Dy� D�Et�@D�X@D@ �  D �  Dm�  C~ K@� D0� DJ� D1� D6� Dy� D2�Et�@DA@D@ �  D3�  Dr�  C~ K@� D7� DJ� D8� D9� D}� D:�Et�@D�p@D"@ �  D;�  DT�  C~ K@� D � DJ� D � D � D� D:�Et�@D�p@D @ �  D �  DT�  C~ K@� D� DJ� D� DH� D}� D�Et�@D2@F #�@ �  D�  D^�  C~ K@� D�� DJ� D�� D � Dy� D��Et�@DL@D@ �  D��  DV�  C~ K@� D�� DJ� D�� D�� Dx� D��Et�@DO@D@ �  D��  D��  C~ K @� Dx� DJ� Dy� Dz� D� D�~ Et�@� DG�  DG�  DG�  DZ�  C~ K"@� D<� DJ� D=� D>� Dy� D�~ Et�@� DG� DG� DG� DZ� C~ K$@� D�� DJ� D�� D�� Dx� D&� Et�@D�x@D�? � D�� DU� C~ K&@� D�� DJ� D�� D � D�� D&� Et�@Dy@D�? � D�� DU� C~ K(@� D�� DJ� D�� D�� Dx� D&� Et�@D�x@D@ � D�� DU� C~ K*@� D�� DJ� D�� D�� Dy� D&� Et�@Dy@D@ � D�� DU� C~ K,@� Dt� DJ� Du� Dv� Dx� D&�Et�@D0y@D�? �  Dw�  DU�  C~ K.@� D(� DJ� D)� D*� D� D>�Et�@D�@@D"@ �  D+�  DP�  C~ K0@� D,� DJ� D-� DI� Dx� D.�Et�@D4@D@ �  D/�  Db�  C~ K1@� D�� DJ� D�� D � Dx� D��Et�@DK@D�? �  D��  Dp�  C~ K2@� D�� DJ� D�� D� D� D~ Et�@� DG�  DG�  DG�  DQ�  C~ K3@� D�� DJ� D�� D�� Dw� D~ Et�@� DG�  DG�  DG�  DQ�  C~ K4@� Dj� DJ� Dk� Dl� Dy� D~ Et�@� DG�  DG�  DG�  DQ�  C~ K5@� D9� DJ� D:� D"� Dy� D~ Et�@� DG�  DG�  DG�  DQ�  C~ K6@� D;� DJ� D#� D�� Dy� D~ Et�@� DG�  DG�  DG�  DQ�  C~ K7@� DY� DJ� DZ� D� Dy� D��Et�@D�a@D@ �  D[�  Da�  C~ K8@� D#� DJ� D$� D=� Dy� D'�Et�@D(@D@ �  D%�  DM�  C~ K9@� D�� DJ� D�� D� D�� D'�Et�@D(@D@ �  D��  DM�  C~ K:@� Dm� DJ� Dn� D"� D� D<�Et�@D@D�? �  Do�  D`�  C~ K;@� D\� DJ� D]� D^� D{� D<�Et�@D@D@ �  D_�  D`�  C~ K<@� DQ� DJ� DR� DS� Dx� D<�Et�@D@D@ �  D��  D`�  C~ K=@� D� DJ� D� D� Dy� D�Et�@DF@D@ �  D�  Dc�  C~ K>@� D� DJ� D� D� Dy� D�Et�@D�E@D@ �  D�  Dc�  C~ K?@� D�� DJ� D�� D� Dx� D�Et�@D�E@D@ �  D��  Dc�  C�D�l������������������������������� ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? ~ K@@� DF� DJ� DG� DH� Dx� D�~ Et�@� DG� DG� DG� Dg� C~ !K�@@� !Db� !DJ� !Dc� !De� !D�� !D{�!Et�@D2@D�? � ! D�� ! Ds� ! C~ "KA@� "D�� "DJ� "D�� "D� "D� "D�"Et�@D?@D@ � " D�� " Dj� " C~ #K�A@� #D�� #DJ� #D�� #D � #D� #D��#Et�@DE@D�?F` �@ � # Dn� # C~ $KB@� $D� $DJ� $D � $D � $D�� $D��$Et�@DE@D@ � $ D!� $ Dn� $ C~ %K�B@� %D�� %DJ� %D�� %D�� %D� %D��%Et�@D;@D@ � % D�� % D�� % C~ &KC@� &D�� &DJ� &D�� &D�� &Dw� &D��&Et�@D;@D@ � & D�� & D�� & C~ 'K�C@� 'D+� 'DJ� 'D,� 'D-� 'D� 'D��'Et�@D;@D@ � ' D.� ' D�� ' C~ (KD@� (D$� (DJ� (D%� (D&� (D� (D��(Et�@D;@D@ � ( D'� ( D�� ( C~ )K�D@� )D�� )DJ� )D�� )D�� )Dw� )D��)Et�@D@D�? � ) D�� ) DL� ) C~ *KE@� *D�� *DJ� *D�� *D�� *Dy� *D��*Et�@D(@D@ � * DG� * D]� * C~ +K�E@� +D�� +DJ� +D�� +D�� +Dx� +D�+Et�@DY@D@ � + D�� + Dd� + C~ ,KF@� ,D�� ,DJ� ,D�� ,D� ,Dw� ,D��,Et�@D,@D�? � , D�� , Do� , C~ -K�F@� -D�� -DJ� -D�� -D�� -Dx� -D�-Et�@D=@D@ � - D�� - DK� - C~ .KG@� .D�� .DJ� .D�� .D� .Dy� .D4�.Et�@D�u@� . D5� . D� . De� . C~ /K�G@� /D�� /DJ� /D�� /D� /D~� /D��/Et�@DL@D@ � / D�� / Dl� / C~ 0KH@� 0DM� 0DJ� 0DN� 0DO� 0Dx� 0DE�0Et�@D�J@D�? � 0 DP� 0 DX� 0 C~ 1K�H@� 1D� 1DJ� 1D�� 1D�� 1D�� 1D��1Et�@D�D@D @ � 1 D�� 1 DO� 1 C~ 2KI@� 2DI� 2DJ� 2DJ� 2DK� 2Dz� 2D��2Et�@D�D@D@ � 2 DL� 2 DO� 2 C~ 3K�I@� 3D�� 3DJ� 3D�� 3D� 3D� 3D��3Et�@DA@D@ � 3 D�� 3 Dh� 3 C~ 4KJ@� 4D/� 4DJ� 4D0� 4D1� 4D� 4D��4Et�@D4@D@ � 4 D�� 4 DY� 4 C~ 5K�J@� 5D`� 5DJ� 5Da� 5D� 5Dy� 5D��5Et�@D @D@ � 5 Dd� 5 DS� 5 C~ 6KK@� 6DT� 6DJ� 6DU� 6DV� 6Dy� 6D��6Et�@DE@D8@ � 6 DW� 6 Dk� 6 C~ 7K�K@� 7DA� 7DJ� 7DB� 7DC� 7Dy� 7D��7Et�@DE@D.@ � 7 DD� 7 Dk� 7 C~ 8KL@� 8D5� 8DJ� 8D6� 8D7� 8Dv� 8D �8Et�@D�^@D@ � 8 D8� 8 D\� 8 C~ 9K�L@� 9D�� 9DJ� 9D�� 9D� 9D� 9D��9Et�@D=@D@ � 9 D�� 9 D_� 9 C~ :KM@� :D�� :DJ� :D�� :D�� :D� :D��:Et�@D@`@� : DG� : D�� : Di� : C~ ;K�M@� ;D?� ;DJ� ;D@� ;D� ;D|� ;DX�;Et�@D�C@D@ � ; Df� ; DX� ; C~ <KN@� <D�� <DJ� <D�� <D�� <Dt� <D!~ <Et�@� <DG� < DG� < DG� < DR� < C~ =K�N@� =D�� =DJ� =D�� =D�� =Dt� =D!~ =Et�@� =DG� = DG� = DG� = DR� = C~ >KO@� >D�� >DJ� >D�� >D�� >Dt� >D!~ >Et�@� >DG� > DG� > DG� > DR� > C~ ?K�O@� ?D|� ?DJ� ?D}� ?D~� ?Dt� ?D!~ ?Et�@� ?DG� ? DG� ? DG� ? DR� ? C�D�l�������������������������������@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ~ @KP@� @D(� @DJ� @D)� @D*� @D� @D!~ @Et�@� @DG� @ DG� @ DG� @ DR� @ C~ AK@P@� AD2� ADJ� AD3� AD4� ADt� AD!~ AEt�@� ADG� A DG� A DG� A DR� A C~ BK�P@� BD�� BDJ� BD�� BD�� BDt� BD�BEt�@D@D@ � B D� B Dq� B C~ CK�P@� CDp� CDJ� CDq� CDr� CD� CD�CEt�@D@� C DG� C Ds� C Dq� C C~ DKQ@� DDg� DDJ� DDh� DDi� DDt� DD�~ DEt�@� DDG� D DG� D DG� D DN� D C~ EK@Q@� ED�� EDJ� ED�� ED�� EDu� ED�~ EEt�@� EDG� E DG� E DG� E D[� E C~ FK�Q@� FD� FDJ� FD� FD� FDt� FD�~ FEt�@� FDG� F DG� F DG� F D[� F C~ GK�Q@� GD� GDJ� GD� GD� GDt� GD~ GEt�@� GDG� G DG� G DG� G Df� G C~ HKR@� HD�� HDJ� HD�� HD� HD� HD��HEt�@D�O@D@ � H D�� H DW� H C�IKDDDDDDEDDDD �JKDDDDDDEDDDD �KKDDDDDDEDDDD �LKDDDDDDEDDDD �MKDDDDDDEDDDD �NKDDDDDDEDDDD �OKDDDDDDEDFDD �PKDDDDDDEDDDD �QKDDDDDDEDDDD �RKDDDDDDEDDDD �SKDDDDDDEDDDD �TKDDDDDDEDDDD �UKDDDDDDEDDDD �VKDDDDDDEDDDD �WKDDDDDDEDDDD �XKDDDDDDEDDDD �YKDDDDDDEDDDD �ZKDDDDDDEDDDD �[KDDDDDDEDDDD �\KDDDDDDEDDDD �]KDDDDDDEDDFD �^KDDDDDDEDDFD �_KDDDDDDEDDDD �D� l���������""""""""""""""""""""""` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  �`KDDDDDDEDFDD �aKDDDDDDEDDDD �bKDDDDDDEDDDD �cKDDDDDDEDDDD �dKDDDDDDEDDDD �eKDDDDDDEDDDD �fKDDDDDDEDDDD �gKDDDDDDEDDDD �hKDDDDDDEDDDD �iKDDDDDDEDDDD �jKDDDDDDEDDDD �kKDDDDDDEDDDD �lKDDDDDDEDDDD �mKDDDDDDEDDDD �nKDDDDDDEDDDD �oKDDDDDDEDDDD �pKDDDDDDEDDDD �qKDDDDDDEDDDD �rKDDDDDDEDDDD �sKDDDDDDEDDDD �tKDDDDDDEDDDD �uKDDDDDDEDDDD �vKDDDDDDEDDDD �wKDDDDDDEDDDD �xKDDDDDDEDDDD �yKDDDDDDEDDDD �zKDDDDDDEDDDD �{KDDDDDDEDDDD �|KDDDDDDEDDDD �}KDDDDDDEDDDD �~KDDDDDDEDDDD �KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDFD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""                                     �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? � KDDDDDDEDDDD �!KDDDDDDEDDDD �"KDDDDDDEDDDD �#KDDDDDDEDDDD �$KDDDDDDEDFDD �%KDDDDDDEDDDD �&KDDDDDDEDDDD �'KDDDDDDEDDDD �(KDDDDDDEDDDD �)KDDDDDDEDDDD �*KDDDDDDEDFDD �+KDDDDDDEDFDD �,KDDDDDDEDDDD �-KDDDDDDEDDDD �.KDDDDDDEDDDD �/KDDDDDDEDDFD �0KDDDDDDEDDDD �1KDDDDDDEDDDD �2KDDDDDDEDDDD �3KDDDDDDEDDDD �4KDDDDDDEDFDD �5KDDDDDDEDDDD �6KDDDDDDEDDDD �7KDDDDDDEDDDD �8KDDDDDDEDDDD �9KDDDDDDEDDDD �:KDDDDDDEDDDD �;KDDDDDDEDDDD �<KDDDDDDEDDDD �=KDDDDDDEDDDD �>KDDDDDDEDDDD �?KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ �@KDDDDDDEDDDD �AKDDDDDDEDDDD �BKDDDDDDEDDDD �CKDDDDDDEDDDD �DKDDDDDDEDDDD �EKDDDDDDEDDDD �FKDDDDDDEDDDD �GKDDDDDDEDDDD �HKDDDDDDEDDDD �IKDDDDDDEDDDD �JKDDDDDDEDDDD �KKDDDDDDEDDDD �LKDDDDDDEDFDD �MKDDDDDDEDDDD �NKDDDDDDEDDDD �OKDDDDDDEDDDD �PKDDDDDDEDDDD �QKDDDDDDEDDDD �RKDDDDDDEDDDD �SKDDDDDDEDDDD �TKDDDDDDEDDDD �UKDDDDDDEDDDD �VKDDDDDDEDDDD �WKDDDDDDEDDDD �XKDDDDDDEDDDD �YKDDDDDDEDDDD �ZKDDDDDDEDDDD �[KDDDDDDEDDDD �\KDDDDDDEDDDD �]KDDDDDDEDDDD �^KDDDDDDEDDDD �_KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  �`KDDDDDDEDDDD �aKDDDDDDEDDDD �bKDDDDDDEDDDD �cKDDDDDDEDDDD �dKDDDDDDEDDDD �eKDDDDDDEDDDD �fKDDDDDDEDDDD �gKDDDDDDEDDDD �hKDDDDDDEDDDD �iKDDDDDDEDDDD �jKDDDDDDEDDDD �kKDDDDDDEDDDD �lKDDDDDDEDDDD �mKDDDDDDEDDDD �nKDDDDDDEDDDD �oKDDDDDDEDDDD �pKDDDDDDEDDDD �qKDDDDDDEDDDD �rKDDDDDDEDDDD �sKDDDDDDEDDDD �tKDDDDDDEDDDD �uKDDDDDDEDDDD �vKDDDDDDEDDDD �wKDDDDDDEDDDD �xKDDDDDDEDDDD �yKDDDDDDEDFDD �zKDDDDDDEDDDD �{KDDDDDDEDDDD �|KDDDDDDEDDDD �}KDDDDDDEDDDD �~KDDDDDDEDDDD �KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDFD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDFD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDFD ��KDDDDDDEDDDD ��KDDDDDDEDDFD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDFDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD ��KDDDDDDEDDDD �D�l"""""""""""""""""""""""""""""""                               �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDFDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD � KDDDDDDEDDDD �KDDDDDDEDDFD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �KDDDDDDEDDDD �8|�""""""""""""""""""""""""">�@<dD��B  � �7gg����D �� �����Oh��+'��0�HP\t � � ���xwxAdministratorMicrosoft Excel@�q�W��@�'���@���C���� ��՜.��+,��0� PXd lt|� � ��  2013SCI����'2013SCI����'!Print_Titles ������ ������Χ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Root Entry�������� �F����Workbook�������������SummaryInformation(�����DocumentSummaryInformation8�������������